β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism.

نویسندگان

  • Elena Fernández-Arenas
  • Enrique Calleja
  • Nadia Martínez-Martín
  • Severine I Gharbi
  • Rosana Navajas
  • Noel García-Medel
  • Petronila Penela
  • Antonio Alcamí
  • Federico Mayor
  • Juan P Albar
  • Balbino Alarcón
چکیده

T-cell receptors (TCR) recognize their antigen ligand at the interface between T cells and antigen-presenting cells, known as the immunological synapse (IS). The IS provides a means of sustaining the TCR signal which requires the continual supply of new TCRs. These are endocytosed and redirected from distal membrane locations to the IS. In our search for novel cytoplasmic effectors, we have identified β-arrestin-1 as a ligand of non-phosphorylated resting TCRs. Using dominant-negative and knockdown approaches we demonstrate that β-arrestin-1 is required for the internalization and downregulation of non-engaged bystander TCRs. Furthermore, TCR triggering provokes the β-arrestin-1-mediated downregulation of the G-protein coupled chemokine receptor CXCR4, but not of other control receptors. We demonstrate that β-arrestin-1 recruitment to the TCR, and bystander TCR and CXCR4 downregulation, are mechanistically mediated by the TCR-triggered PKC-mediated phosphorylation of β-arrestin-1 at Ser163. This mechanism allows the first triggered TCRs to deliver a stop migration signal, and to promote the internalization of distal TCRs and CXCR4 and their translocation to the IS. This receptor crosstalk mechanism is critical to sustain the TCR signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C delta localizes to secretory lysosomes in CD8+ CTL and directly mediates TCR signals leading to granule exocytosis-mediated cytotoxicity.

Lytic granule exocytosis is the major effector function used by CD8(+) CTL in response to intracellular pathogens and tumors. Despite recent progress in the field, two important aspects of this cytotoxic mechanism remain poorly understood. First, TCR-signaling pathway(s) that selectively induces granule exocytosis in CTL has not been defined to date. Second, it is unclear how Ag receptor-induce...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Signals and sequences that control CD28 localization to the central region of the immunological synapse.

During T cell interaction with APC, CD28 is recruited to the central region (cSMAC) of the immunological synapse. CD28-mediated signaling through PI3K results in the recruitment of protein kinase C-theta (PKCtheta) to the cSMAC, activation of NF-kappaB, and up-regulation of IL-2 transcription. However, the mechanism that mediates CD28 localization to the cSMAC and the functional consequences of...

متن کامل

Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription.

During T cell activation by APC, CD28 is colocalized with TCR in the central supramolecular activation cluster (cSMAC) region of the immunological synapse. CD28 signaling through PI3K results in the recruitment of protein kinase C (PKC)theta to the cSMAC, activation of NF-kappaB, and induction of IL-2 transcription. These results suggest that localized engagement of CD28 within the cSMAC may be...

متن کامل

Altered TCR signaling from geometrically repatterned immunological synapses.

The immunological synapse is a specialized cell-cell junction that is defined by large-scale spatial patterns of receptors and signaling molecules yet remains largely enigmatic in terms of formation and function. We used supported bilayer membranes and nanometer-scale structures fabricated onto the underlying substrate to impose geometric constraints on immunological synapse formation. Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2014